Five Simple Steps to Immediately Determine Industrial CHP Viability

David C. Oehl, P.E.

April 9, 2015
Overview

- Introduction
- Industrial CHP Motivations
- Market Conditions
- Viability Modeling
- Government Initiatives
- The Five Simple Steps
- Takeaways
Introduction

MAVEN POWER

- Equipment & Services for On-site & Distributed Power Generation
- Thermal Power Generation (2-50MW)
- Engineering to Turn-key
- Cogeneration/CHP Projects
 - Prequalification
 - Techno-Economic Feasibility Studies
 - Basic/Detailed Engineering
 - EPC Support
- 5 Simple Steps a result of complex, costly Studies
Industrial CHP Motivations

- Combined Heat & Power (CHP) or Cogeneration
- Traditional Markets
 - Pulp & Paper
 - Bottling, Canneries, Breweries
 - Campuses (Hospitals, Universities)
 - Oil & Gas, Cement, Steel
- Industrial Sector is Large Market
 - 30% of all Consumed Power
Industrial CHP Motivations

- Abundant & Low Cost Natural Gas
 - 120 year supply
 - Explosive new growth
 - Prices still at Historic Lows ($\frac{1}{4} - \frac{1}{6}$ Diesel Price)
 - Clean (2 x coal)

- Spark Spreads Reasonable \rightarrow Trending Higher?

- Aversion to Foreign Energy Sources

- Low Cost, Abundance of Capital

- Governmental & Regulatory Initiatives
Market Conditions

- Electric Prices Stable over Last Several Years (6.5 – 7.5 ¢ per kWh).
- Natural Gas Prices Down ~30% since Jan 2010
- Spark Spread Average more than doubled since early 2010.
 - Single Largest Indicator of CHP Viability
CHP Viability Modeling

- Gas Turbine (1 x 1 configuration)
 - 5.3MWe (CGT)
 - 24,000 pph saturated steam
 - 82% CHP Efficiency
 - 92.5% load factor

- Industrial User
 - Low or no land costs
 - Low cost of money
 - Near all-in analysis
 - Capex, Siting, Financing
 - O&M, Overhauls
 - SCR

April 9, 2015
CHP Viability Modeling

5.3MW Cogeneration Plant
Time to Payback for Various Installed Costs
Zero Plant Asset Consideration

<table>
<thead>
<tr>
<th>Installed Cost (USD/kW)</th>
<th>Spark Spread (¢/kWh – USD/MMBtu)</th>
<th>Payback (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2000</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>$1800</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>$1600</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>$1500</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>$1400</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$1200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$1000</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
CHP Viability Modeling

5.3MW Cogeneration Plant
Time to Payback for Various Installed Costs
$1500/kW Plant Asset Consideration

<table>
<thead>
<tr>
<th>Spark Spread (¢/kWh – USD/MMBtu)</th>
<th>Payback (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>7.54 yrs</td>
</tr>
<tr>
<td>2</td>
<td>6.33 yrs</td>
</tr>
<tr>
<td>2.5</td>
<td>5.42 yrs</td>
</tr>
<tr>
<td>3</td>
<td>4.52 yrs</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Installed Cost (USD/kW)
- 0% Asset Value
- 30% Asset Value
- 40% Asset Value
- 50% Asset Value
Government & Regulatory Initiatives

- Executive Order “Accelerating Investment in Industrial Energy Efficiency”
 - 40GW of NEW Industrial CHP by 2020
 - Workshops to review investing models and barriers to CHP
 - Incentives for deploying CHP
 - Emissions Trading Programs
 - Grants & Loans
 - Compliance Options which recognize emissions benefits of CHP.
Government & Regulatory Initiatives

● State Level – Texas
 – TCEQ (TX Commission on Environmental Quality) Permit by Rule 106.513
 – Cuts red tape associated with Environmental Air Permits
 – Two Industrial CHP Size Ranges
 • Up to 8MWe
 • Up to 15MWe
Government & Regulatory Initiatives

- State Level – Texas

<table>
<thead>
<tr>
<th>Plant Size Range (1 Unit or Combination)</th>
<th>Emission Type</th>
<th>Emission Limit (lb/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20kw to 8MW</td>
<td>NO\textsubscript{x}</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>9.0</td>
</tr>
<tr>
<td>8MW to 15MW1</td>
<td>NO\textsubscript{x}</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Table 1. TCEQ Permit by Rule Emissions Limits

- Values DO NOT include CHP credit of 1MW per 3.4MMBtu of Recovered Heat
- Some Standard Industrial DLE Turbine Units Qualify, Unmodified

1CHP Plants in this size range require an oxidation catalyst device to ensure compliance with NAAQS PM\textsubscript{2.5} requirements.
Government & Regulatory Initiatives

5.0 MWe Example Calculation - Texas PBR

NOx = 5.8 lb/h, for one hour --> 5.8 lb NOx
5.8/5.0 MWe = 1.16 lb/MWh (FAILS the 1.0 lb/MWh NOx requirement)

Exhaust Heat = 24.1 MMBtu/hr. Assume 80% HRSG efficiency and 25% recovery² → 24.1 x 0.8 x 0.25 = 4.82 MMBtu/hr

Credit → 1 MWh per 3.4 MMBtu
4.82/3.4 = 1.41

So, 5.0 + 1.41 = 6.41 MWe
New, Adjusted Requirement = 6.41 / 5.0 = 1.283 lb/MWh
1.16 lb/MWh now PASSES the NOx requirement (1.16 < 1.283)

²PBR requires a minimum of 20% heat recovery to qualify.
The Five Simple Steps to Determine Industrial CHP Viability
The Five Simple Steps to Determine Industrial CHP Viability

1. **Power & Natural Gas Source**
 - Currently purchasing natural gas & kWh’s from external supplier
 - Heat Generated at end user’s facility using natural gas or purchased directly.
The Five Simple Steps to Determine Industrial CHP Viability

1. **Power & Natural Gas Source**
 - Currently purchasing natural gas & kWh’s from external supplier
 - Heat Generated at end user’s facility using natural gas or purchased directly.

2. **Spark Spread**
 - Spread should be greater than 2 - 2.5
 - (¢/kWh – USD/MMBtu)
1. **Power & Natural Gas Source**
 - Currently purchasing natural gas & kWh’s from external supplier
 - Heat Generated at end user’s facility using natural gas or purchased directly.

2. **Spark Spread**
 - Spread should be greater than 2 - 2.5
 - (₵/kWh – USD/MMBtu)

3. **Power Consumption > 5.0MWe**
The Five Simple Steps to Determine Industrial CHP Viability

1. **Power & Natural Gas Source**
 - Currently purchasing natural gas & kWh’s from external supplier
 - Heat Generated at end user’s facility using natural gas or purchased directly.

2. **Spark Spread**
 - Spread should be greater than 2 - 2.5
 - (₵/kWh – USD/MMBtu)

3. **Power Consumption > 5.0MWe**

4. **Sizing Correlation:**
 - Steam Consumption >= 50% of Capacity
 - Electric Consumption = 100% of Capacity (plant sized for heat)
The Five Simple Steps to Determine Industrial CHP Viability

1. **Power & Natural Gas Source**
 - Currently purchasing natural gas & kWh’s from external supplier
 - Heat Generated at end user’s facility using natural gas or purchased directly.

2. **Spark Spread**
 - Spread should be greater than 2 - 2.5
 - ($/kWh – USD/MMBtu)

3. **Power Consumption > 5.0MWe**

4. **Sizing Correlation:**
 - Steam Consumption >= 50% of Capacity
 - Electric Consumption = 100% of Capacity (plant sized for heat)

5. **Capacity Factor >= 60%:**
The Five Simple Steps to Determine Industrial CHP Viability

1. Five Steps based on dozens of studies and executed projects.

2. Viability Defined?
 - Simple payback period used
 - Could use IRR, Cash Flow, Reliability Criteria

3. Sufficient but not Necessary for Feasible Project
 - Electrical Load < 5MW?
 - Steam Load < 50% Capacity?
 - Dramatic Capacity Factor Changes (Seasonal, Operational)?
Takeaways

● Industrial CHP continues to be attractive
 – Reasonable payback periods
 – Energy availability

● Worst Case scenario presented:
 – Single Unit, Small kWh & pph requirements
 – No subsidies or other gov’t support

● 5 Simple Steps an easy pre-qualifier:
 – Good indicator prior to definitive feasibility studies
 – Helps determine plant size and energy requirements
 – Consider kWh, kW/kVAR demand and demand credits in a hybrid for the spark spread criteria.
Takeaways

- Industrial CHP doesn’t have to be a large Capital Expenditure consideration for end user.
 - Abundance of money on the sidelines
 - 3rd Party BOO projects could reduce power costs by 15% or more.
David C. Oehl, P.E.

www.mavenpower.com
Tel: +1 (832) 552-9225
Houston, TX